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ABSTRACT: Polymer−surface interactions are crucial to many
biological processes and industrial applications. Here we propose a
machine learning method to connect a model polymer’s sequence
with its adhesion to decorated surfaces. We simulate the adhesive
free energies of 20000 unique coarse-grained one-dimensional
polymer sequences interacting with functionalized surfaces and
build support vector regression models that demonstrate
inexpensive and reliable prediction of the adhesive free energy as
a function of sequence. Our work highlights the promising
integration of coarse-grained simulation with data-driven machine
learning methods for the design of functional polymers and represents an important step toward linking polymer compositions with
polymer−surface interactions.
KEYWORDS: polymer sequence, polymer−surface interaction, polymer adsorption, inverse design, machine learning,
free energy calculation, molecular dynamics simulation, genetic algorithm

■ INTRODUCTION
Polymer−surface interactions are critical to many industrial
applications and biological processes.1−4 Writing or painting
on paper with macromolecular pigments and inks provides a
ubiquitous example of polymer−surface interactions.2 Many
industrial products, such as coatings used on the surfaces of
magnetic storage media, silicon capacitors, and computer
hardware, exploit polymer−surface interactions. These inter-
actions are also integral to novel processes. For example, Kim
et al.1 utilize the interactions of block copolymers with
chemically patterned surfaces to induce epitaxial self-assembly
of block polymer domains, allowing for molecular-level control
in top-down fabrication techniques. Additionally, many
biological processes also involve what in essence are
polymer−surface interactions. The interactions between
heterochromatin and nuclear lamina affect the cell nuclear
reorganization, reflecting cellular senescence processes.5 Vital
biological processes such as intracellular signaling and
incorporation of viruses into host cells4,6 are initiated by a
protein searching for and recognizing a specific receptor on a
cell surface. A small change in the sequence of the polymers
affects their interactions and adhesive properties. For instance,
mutations in the virus, like D164G, N501Y, and 501.V2 of
COVID-19,7−9 change the spike protein structures and
functionalities enabling the new spike protein to bind more
easily with the ACE2 receptor, leading to a higher likelihood of
infections. On a practical level, an understanding of the
quantitative effects polymer sequences can have on surface

adhesion is an essential ingredient for the design and synthesis
of adhesive materials for tissues,10 where the surfaces to be
attached may have significant compositional heterogeneity.

Several early theoretical and computational studies have
examined the effects of polymer composition on polymer−
surface interactions and molecular recognition.11−14 Chakra-
borty and Bratko12 utilized Monte Carlo simulation to study
the adsorption of random heteropolymers (RHPs) on
disordered multifunctional surfaces, finding that a sharp
adsorption transition occurs when statistical pattern matching
exists between the RHP sequence and the surface site
distribution. Muthukumar13,14 performed studies utilizing
both theoretical analysis and Monte Carlo simulations to
study the interactions of a polyelectrolyte chain with a
patterned surface of opposite charge, illustrating that the self-
assembly of polymer molecules at patterned surfaces is largely
affected by the charge density, the size of the pattern, and the
Debye length. It is also known that polymer structural
properties, such as the radius of gyration, can also influence
polymer−surface interactions.15 A coarse-grained statistical
mechanical study of AB copolymers interacting with stripes of
A and B beads on a surface was performed by Kriksin et al.,16

who found that the adsorption behavior strongly depends on
the copolymer sequence distribution and the arrangement of
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selectively adsorbing regions on the substrate.16 While some of
these studies emphasize the importance of polymer sequence
in surface adhesion,12 both a qualitative understanding and a
quantitative understanding of sequence design principles are
lacking.12 The formidable challenge here is that databases for
polymer sequences and structures comparable to extant
databases for comparable properties17 do not exist and are
expensive to create.

Machine learning (ML) and artificial intelligence (AI) have
emerged as powerful tools for physical science and engineer-
ing,18−21 highlighted by recent projects AlphaFold222,23 and
RoseTTAFold.24 Naturally, this has opened the door to many
investigations exploring the predictions of polymer structure
and therefore function from the sequence information, as well
as “inverse design” research.17,25−28 For instance, Statt et
al.29−31 have investigated the sequence-dependent aggregation
behavior of sequence-defined macromolecules via the un-
supervised learning method. Another interesting case is that
Meenakshisundaram and co-workers32 have designed se-
quence-specific copolymer compatibilizers using a genetic
algorithm applied to a coarse-grained molecular dynamics
model. In one important related example, Webb et al.17 utilized
a deep neural network (DNN) to predict the structural
properties of sequence-controlled coarse-grained polymers just
from the sequence information. These successful cases17,29,30,32

inspire us to utilize ML and AI to investigate the quantitative
relationships between the adhesive free energies and the
polymer sequence information.

In this work, we utilize biased molecular dynamics
simulations to generate a database of free energies that
connect the polymer sequence and composition of a patterned
surface to its adhesive properties. From this database, we build
an inexpensive surrogate model using support vector regression
(SVR), which demonstrates reliable prediction of the adhesive
free energy of the polymer−surface interaction as a function of
the provided polymer sequence information. Subsequently, we
apply this model to design targeted sequences using a genetic
algorithm. Finally, we illustrate how the polymer sequence can
be manipulated to affect the adhesive free energy with the
surface and how to do inverse engineering of the polymer
sequence using the genetic algorithm.

■ METHODS
Molecular Dynamics (MD) Simulation. We utilize model

polymer chains containing 20 backbone beads based on the classic
model of Kremer and Grest,33 which has been widely utilize to
investigate polymer interfacial properties.32,34−36 The pair interaction
between beads is described via a 12-6 Lennard-Jones (LJ) potential:
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where ϵij sets the interaction energy between two types of beads (red
beads are A, and green beads are B; ϵAA = ϵBB = 1, and ϵAB = 0.3), σ
sets the range of the interaction, and r is the distance between two
beads in dimensionless LJ units. The AA and BB Lennard-Jones
interactions are truncated at a distance of 2.5σ, while the AB Lennard-
Jones interaction is truncated at a distance of 21/6σ so that it is purely
repulsive. While simple, the construction of the model imposes an
asymmetry in adhesion that can be optimized by searching over the
sequence space of the polymers. Finally, bonds are handled via the
finitely extensive nonlinear elastic (FENE) potential.37−40 An N of 20
is chosen in this work as a chain length that balances the complexity
of configurational space (220 states are available) with the anticipated
computational cost of the study; 20 polymers evolve sufficiently fast in

molecular dynamics simulation to enable extensive (if not
comprehensive) data gathering and exploration of the trade-off
between the extent of simulation and accuracy in our surrogate model.

E KR r
R

1
2

ln 1bond 0
2

0

2

=
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (2)

where K (=30ϵ/σ2) is the spring constant and R0 (=1.5σ) is the
maximum extent.

The patterned surface (PS) is 20σ × 20σ, containing 400 beads of
type A or B, which have the same 12-6 LJ potential setting as the
respective polymer beads. The PS’s position is fixed in the z = 0 plane,
and the distance between each bead is σ, shown in Figure 1a. As

Figure 1. (a) Schematic representation of our simulations involving a
polymer chain of defined sequence interacting with a patterned
surface with a cubic simulation box whose side length a = 20σ. The
polymer chain and surface are both composed of two types of beads,
A (red) and B (green). The polymer is modeled as a flexible 20-bead
linear chain. The surface is holonomically constrained with
dimensions of 20σ × 20σ arranged in a simple square lattice with
400 beads. The four surfaces we examine (b−d) have different
patterns with the composition divided approximately equally between
beads A and B. (b) PS1, which is composed of half A beads and half B
beads in two stripes. NA = 200, and NB = 200. (c) PS2, which is
composed of 16 alternate small size squares (5σ × 5σ) of A and B
beads. NA = 200, and NB = 200. (d) PS3 is randomly generated with a
probability of 1/2 for each site to be A or B. While even the
composition is the most likely state, it is not guaranteed, and there is a
significant probability for other configurations to be generated. The
surface used as PS3 had an NA of 184 and an NB of 216. PS3 is one
specific randomized surface pattern. (e) PS4, which is built upon PS2,
but randomized within the interior of the 5σ × 5σ squares. The
surface used as PS4 had an NA of 206 and an NB of 194. PS4 is also
one specific randomized surface pattern in a slightly more restricted
way.
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shown in panels b−e of Figure 1, we investigate four different PSs to
validate that our method is robust for surfaces with different patterns.
Detailed composition information (NA and NB) for the four PSs is
presented in Table 1.

Enhanced Sampling. Elucidating the adhesive free energies of
sequence-defined polymers with patterned surfaces requires efficient
sampling of the rare events comprising removal and re-adhesion of a
polymer to the interface, because significant energy barriers must be
scaled to enable these rearrangements. Enhanced sampling calcu-
lations proceed by applying a bias to collective variables to accelerate
the exploration of the simulation systems. Collective variables (CVs),
closely related to the concept of reaction coordinates, are a low-
dimensional projection of the high-dimensional space of MD
simulations, which can clearly distinguish reactants from products
and quantify dynamical progress along the pathway from reactants to
products.41 Generally, this defines a vector-valued function from the
space of nuclear positions to the reduced CV space, ξ: N n3 ,
where N is the number of atoms and n the desired reduced
dimensionality. For studying the adsorption process on a surface, it is
typically sufficient to define a single collective variable. Here, we opt
for a single CV (d), the distance between the polymer chain’s center
of mass (zCM), and the surface (zsurface = 0)

d z z zCM surface CM= = (3)

Here d ≡ zCM because the patterned surface is located at z = 0; we
thus use zCM as the CV for later descriptions. We obtain potentials of
mean force (PMFs, here identical to the free energy landscape of a
single polymer interacting with the surface) for this coordinate using
the multiwalker adaptive bias force (ABF) algorithm42 as
implemented in SSAGES.43 We choose to sample zCM in the range
of [0.8σ, 9.8σ] with 90 bins. We use four walkers starting from
different initial configurations, running each for a total of 2 × 107 MD
time steps with a length Δt of 0.001τ ( m /2= defining the
standard time scale incorporating the Lennard-Jones ϵ and the bead
mass m) to obtain a converged result. Example PMFs (F vs zCM) are
plotted in Figure 2. Generally, as zCM increases from 0.8σ, F first
decreases to a minimum value Fmin because of the repulsive force
between the polymer and the surface. Subsequently, F then increases
because of the attractive force between the polymer and the surface.
Finally, when zCM ≳ 7, F becomes flat at the plateau free energy in the
non-interacting state Fo as there is no interaction between the
polymer and the surface. We define adhesive energy ΔF for each
sequence-defined polymer chain interacting with the PS as the
difference between the plateaued non-interacting state Fo and the
minimum state Fmin (ΔF = Fo − Fmin)

15 and use this quantity to train
the machine learning models explored in this paper. We note from
Figure 2 that PMF landscapes have similar shapes but vary in
magnitude for different polymer sequences. While each polymer−
surface interaction can potentially have more subtle features, ΔF
captures the essential adhesive property.
Machine Learning.We use support vector regression (SVR)44−46

to build a model predicting polymer−surface interactions ΔF from
limited polymer sequence information. The basic idea of a support
vector machine (SVM)45−48 is first to map the data into a high-
dimensional space and then construct an optimal separating
hyperplane in this space. The SVM thus constructed is then used
to perform SVR. We utilize the SVR implementation in the open-
source python package Scikit-learn49 using radial basis functions for
the regression. The settings of the optimized values of the

regularization parameter (C) of the error term, the maximum error
(ϵ) that specifies the penalty-free area, and the kernel coefficient (γ)
are stored in the Github repository mentioned in the notes section.
All of the parameters mentioned above are optimized using five-fold
cross-validation.

There are different types of polymer representations, like one-hot
encoding,17,26 molecular embedding,26,50 molecular graph,26,51 and
BIGSMILES.52 Because our coarse-grained model contains only two
types of beads, it is both pragmatic and appropriate to use one-hot
encoding17 to preprocess the polymer sequence information. As
illustrated in Figure 3a, we encode the one-dimensional 20-bead-
length polymer chain’s sequence information into a 20-dimensional
vector, where type A beads are 1 and type B beads are 0. The resulting
vector is the input for the SVR model and is trained to reproduce the
corresponding ΔF of each polymer chain that is obtained from the
aforementioned biased MD simulations. The polymer sequence is
treated as headless; rather than inserting this symmetry into the
model, we augment the data set with this symmetric property, adding
each sequence’s backward representation with the same ΔF output
unless that sequence is a palindrome.a

For each PS in panels b−e of Figure 1, we collect 20000 polymer
chains with unique sequences that have different compositions and
different orders and the corresponding ΔF. A separate SVR model is
trained for each patterned surface. To train the SVR model, we use
five-fold cross-validation after shuffling the data, as shown in Figure
3b. We employ the coefficient of determination (R2) and mean
absolute error (MAE) to characterize the model’s performance and
optimize the SVR model’s hyperparameters [C, γ, and ϵ (see the
caption of Figure 3b)].

■ RESULTS AND DISCUSSION
We begin by exploring the performance of each surrogate
model on the accumulated data sets for adhesive free energy.
In Figures 4−7, we characterize the distribution of free
energies within each data set in panel a, how diverse each free
energy distribution is with respect to the average composition
(quantified by the fraction xA of A-type monomers) in panel b,
and the errors in the training and test data in panels c and d.
Examining the data for PS1 (Figure 4), we note that the
distribution of adhesive free energies over the sequences space
is quite broad, with the best binding occurring for nearly pure
sequences (xA ≈ 0, or xA ≈ 1). Because the surface is
symmetric in its placement of A- and B-type beads, the
distribution of binding energies is symmetric over composi-

Table 1. Compositions for Patterned Surfaces

surface NA NB

PS1 200 200
PS2 200 200
PS3 184 216
PS4 206 194

Figure 2. Example potentials of mean force (PMFs) F (in kBT)
plotted as a function of zCM (in σ) (0.8σ, 9.8σ) for polymers with
different sequences interacting with PS1. Generally, as zCM increases
from 0.8σ, F first decreases to a minimum value Fmin because of the
repulsive force between the polymer and the surface. Then F increases
because of the attractive force between the polymer and the surface;
finally when zCM ≳ 7, F becomes flat at the value of Fo as there is no
interaction between the polymer and the surface. The adhesive energy
for each sequence-defined polymer chain interacting with the surface
is ΔF = Fo − Fmin. The influence of sequence on these quantities is
illustrated by the insets, which show the sequence of the polymer
interacting with PS1 to obtain the given curve.
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tions xA. As shown in panels c and d of Figure 4, training data
are clustered quite tightly around the SVR model, and all
predicted free energies within the test set are within ≈1kBT of
their actual values. The SVR model is thus seen to give good
accuracy and predictive capability.

Similar results are obtained for the surrogate model
developed for surface PS2. This surface has more fine-grained
structure, which results in lower average binding energies and a
more unimodal distribution in interaction energies relative to
PS1 (Figure 5a). The distribution with respect to xA is similarly
more diffuse (Figure 5b). Interestingly, the predictions for this
surface are better than PS1 when the MAE is taken into
account, and the test data are more tightly distributed,

Figure 3. (a) Schematic of our machine learning framework for
predicting polymer−surface interactions from sequence information.
We use one-hot encoding to transfer the 20-bead-length one-
dimensional polymer sequence into a 20-dimensional vector, where
type A beads are 1 and type B beads are 0. The input is a 20-
dimensional vector, while the output is the corresponding adhesive
free energy ΔF. The support vector regression ML models used in this
work are dependent on the surface patterns. We investigate four
different patterned surfaces in this work and train each corresponding
individual support vector regression machine learning model. (b) We
separate the 20000 unique polymer sequences into train data (80%,
16000) and test data (20%, 4000). Inside the training data, to avoid
overfitting, we use five-fold cross-validation to optimize the SVR
model’s parameters (regularization parameter C, maximum error ϵ,
and kernel coefficient γ).45,47,48 Next, we train on the whole training
data with the optimized SVR model. Finally, we evaluate the model’s
performance on the remaining test data that have not been used in the
five-fold cross-validation.

Figure 4. Adhesive free energy data for the interaction between
sequence-specified polymers and surface PS1. (a) Histogram of ΔF
illustrating the distribution of adhesive free energies of polymer
chains. (b) Distribution of ΔF with respect to the overall composition
fraction xA of the polymer. (c) Training behavior and predictive
performance of the SVR model, with the predicted value ΔFML (y-
axis) plotted vs the simulated value ΔF (x-axis) for the training data
(blue) and test data (red). For the testing set, the R2 score is 0.973
and the MAE is 0.382kBT. (d) Histogram of deviation ΔF − ΔFML of
the model from the true value, demonstrating the good predictive
capability of our SVR model for this surface.

Figure 5. Adhesive free energy data for the interaction between
sequence-specific polymers and surface PS2. (a) Histogram of ΔF
illustrating the distribution of adhesive free energies of polymer
chains. (b) Distribution of ΔF with respect to the overall composition
fraction xA of the polymer. (c) Training accuracy and predictive
capability of the SVR model, with ΔFML (y-axis) plotted vs the
simulated value ΔF (x-axis) for the training data (blue) and test data
(red). For the test set, the R2 score is 0.965 and the MAE is 0.230kBT.
(d) Histogram of deviation ΔF − ΔFML of the model from the true
value, demonstrating good accuracy for the behavior of SVR modeling
with this surface.
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indicating the SVR again has good predictive capability (see
Figure 5a,b and its caption).

PS3 is an exemplar surface containing a specific randomized
surface pattern. This is used rather than an average over
multiple surfaces in the context of this study so that errors in
training and test performance resulting from the lack of an
ordered structure can be decoupled from errors due to
fluctuations in the surface used to generate input data.
Modeling results for this surface are shown in Figure 6. The

distribution is seen to have a narrower distribution and smaller
mean in the energy distribution (Figure 6a) than PS1 and PS2,
resulting from the randomized features. In addition, the
randomization results in a skewed distribution of adhesive
properties as a function of composition (Figure 6b). Despite
this, the SVR model again performs extremely well, with

k T( )B accuracy in prediction, despite the relatively broad
training set distribution (when compared to PS1 and PS2) (see
Figure 6c,d). Similar effects are observed for surface PS4
(Figure 7), where the SVR model gives high-accuracy
predictions in absolute terms and when the error relative to
the mean is considered.

From Figures 4a−7a, we see that variations in surface
patterns alter the distributions of ΔF significantly. These
differences from the training data would be expected to affect
the SVR models’ prediction abilities. Though in some cases the
R2 is reduced, this primarily results from an overall broadening
of the distribution relative to the value of the mean of the

distribution. We see that even for the poorest R2 performance
(PS4), the held-out test data still exhibit a high value of
0.86922. Therefore, in general, we see that the SVR models
have extremely good predictive capability.

In the investigations described above, we utilize 20000
unique data points for each case. Typically, larger data sets will
lead to better predictive accuracy for the model. However, it is
difficult to obtain large data sets in many materials sciene use-
cases due to economic and time constraints involved in
building a database from experimental and/or computational
data. Therefore, it is important to quantify the amount of data
necessary to train an effective SVR model. Again, we use a five-
fold cross-validation strategy to choose the training set size by
randomly selecting 5−100% of the data from the four
remaining folds. Figure 8 illustrates the performance of SVR
models, as quantified by the R2 score (blue circles, left axis)
and MAEs (red diamonds, right axis), for predicting ΔF for a
set of 4000 held-out sequences as a function of training set size
(800−16000). The quality of the SVR models (as measured by
R2) for all four surfaces improves monotonically as the training
set size increases, with the sharpest increases coming prior to
8000 training data points; after this, the R2 levels off
considerably. The mean absolute error continues to decrease
after this, though the decrease is more pronounced for PS1 and
PS2 than for PS3 and PS4. This implies that our model could
have performed approximately as well with half of the data
utilized here. The fact that only a few thousand data points are
necessary for predictive models of this quality is promising, as

Figure 6. Adhesive free energy data for the interaction between
sequence-specific polymers and surface PS3. (a) Histogram of ΔF
illustrating the distribution of the adhesive free energies of polymer
chains. (b) Distribution of ΔF with respect to the overall composition
fraction xA of the polymer. As this surface contains randomized
elements, the distribution of adhesive energies is no longer symmetric.
(c) Training and predictive performance of the SVR model, with the
predicted value ΔFML (y-axis) plotted vs the value ΔF (x-axis)
obtained from simulation for the training (blue) and test (red) sets.
For the test set, the R2 score is 0.909 and the MAE is 0.180kBT. (d)
Histogram of deviation ΔF − ΔFML of the model from the true value,
which demonstrates the good predictive capability of our SVR model
for this surface, despite the broader distribution relative to the mean
value of interaction energies with PS3 relative to PS2.

Figure 7. Adhesive free energy data for the interaction between
sequence-specific polymers and surface PS4. (a) Histogram of ΔF
illustrating the distribution of adhesive free energies of polymer
sequences. (b) Distribution of ΔF with respect to the overall
composition fraction xA of the polymer. Because this surface contains
randomized elements, the distribution of adhesive energies is not
symmetric. (c) Training and prediction performance of SVR models,
with the predicted value ΔFML (y-axis) plotted vs the simulated value
ΔF (x-axis) for the training data (blue) and test data (red). For the
test set, the R2 score is 0.869 and the MAE is 0.090kBT. (d)
Histogram of deviation ΔF − ΔFML of the model from the true value,
which demonstrates the predictive capability of SVR models for this
surface, with a narrower distribution of differences between
predictions and data on the test set than other surfaces examined in
this work.
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it enables us to target the accuracy level and optimal size of the
adhesion simulations used to populate our database. This
benefits from the limited complexity of the input vector space
and the simplicity of our optimization question (ΔF for a
single surface). However, with appropriate foresight in
database construction, such results should be generalizable,
highlighting a potential benefit of using ML, because the SVR
machine learning models might be constructed from more
limited data if the tolerances seen here are acceptable. The
need for relatively few data points to determine the essential
character of polymer−interface interactions, along with the
physical relations of each of the patterned surfaces to each
other, indicates that transfer learning25 could be a viable
strategy for improving the model’s accuracy in small data sets.

With models in hand, we demonstrate how their efficiency
may be exploited to perform inverse design of polymer
sequences with a desired ΔF. Here, we apply a genetic
algorithm to perform the optimization. We use an initial
population size of polymer sequences of 1000, a mating
probability of 0.8, and a mutation probability of 0.003. The
algorithm proceeds for 1000 steps. To search for the polymer
sequences with the largest ΔFML, we set the fitness function so
that a larger ΔFML has a larger fitness:

F Ffitness min( ) 0.001i
i
ML ML= + (4)

where i is the index of the sequence, Fi
ML is the

corresponding ML-predicted adhesive free energy, fitnessi is
the corresponding fitness value, and min(ΔFML) is the smallest
ML-predicted adhesive free energy among 1000 sequences in
the current generation. The small numerical offset is applied so
that the fitness function is always strictly greater than zero.
Though the algorithm is run for 1000 generations, in practice it
converges much more quickly (≈50 generations), so that after
this point, it is probing repeats within this model. We have
verified by testing with different initial populations that
changing the initial population does not affect the convergence

rate significantly. The results are summarized in Table 2. The
target sequences for PS1−PS3 are already in the existing

database of 20000 sequences, while the target sequence for
PS4 lies outside the analogous set. We find that the genetic
algorithm provides excellent performance in determining
optimized sequences, and use of the SVR model enables
efficient searching of the compositional space. Though the
search is much more broad, our results have clearly selected for
more block-like polymers that balance local enthalpy with
global entropy. Using the output string, we calculate the
corresponding ΔF using MD simulations. Relative to the
database, these are plotted using the red diamond in Figure 9.

Though some small differences exist between predicted and
actual free energies, these sequences are uniformly at the top
end of the distribution in terms of maximal adhesion. One may
improve these results, if desired, by first using a genetic model
to obtain the top 100 sequences and then running MD
simulations to obtain the true ΔF for these top 100 sequences.
From these outputs, the best ΔF may be chosen. Furthermore,
if searching for other properties, like the sequence correspond-
ing to smallest ΔFML or one specific ΔFML value, one needs to
modify only the fitness function where the desired property has
the largest fitness value.

Overall, we have shown our algortihm can develop a
surrogate model for the generation of sequences that optimally
bind to the surfaces of interest. Because the surfaces and the

Figure 8. R2 scores (blue circles, left axis) and MAEs (red diamonds,
right axis) associated with ML regression models when predicting ΔF
as a function of the number of polymers in a training set for (a) PS1,
(b) PS2, (c) PS3, and (d) PS4. The error bars reflect the standard
deviation (SD) of the R2 scores and the SD of the MAEs from five-
fold cross-validation, in which each fold is used as a test set for SVR
models trained using 5−100% of the data from the remaining four
folds.

Table 2. Target Sequences Obtained by Maximizing ΔFML
for the SVR Models and the Corresponding ΔF for Each
Surface Examined

surface target sequence ΔFML (kBT) ΔF (kBT)

PS1 [00000000000000000000] 23.74 24.67
PS2 [00000000001111111111] 21.68 20.64
PS3 [11111111111111111111] 12.27 11.16
PS4 [00000000000011111111]* 9.36 9.43

Figure 9. Largest ΔFML from application of a genetic algorithm (red
diamonds; see the text for the description) vs the corresponding
simulated ΔF depicted against all sequences (blue circles) in the
existing database for (a) PS1, (b) PS2, (c) PS3, and (d) PS4.
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polymers in question here are relatively simple, the optimal
solutions are, as well. However, a surrogate model trained as
we train the models in this study will also work on more
complex polymer−surface interactions, and in those cases, it
will not necessarily select for simple homopolymer and diblock
structures.

■ CONCLUSION
We utilize a support vector regression model to predict
adhesion free energy ΔF of polymer−surface interaction with
its sequence information as input. In our work, we test four
decorated surfaces with different patterns. The free energy
ranges and energy distributions observed on the surfaces
explored exhibit significant differences. The model inexpen-
sively and reliably predicts adhesive free energies of polymer−
surface interactions from sequential information. Though the
free energies for four different surfaces are very different, each
model exhibits very good accuracy in prediction. We identify
how similar accuracy may be obtained with slightly fewer data
and use the output of these models to design adhesive polymer
sequences using a genetic algorithm, demonstrating good
success in terms of this inverse design problem.

Our work highlights the promising integration of coarse-
grained simulation with data-driven machine learning methods
for obtaining quantitative relationships between polymer
sequences and adhesive free energies and to use this
information for the inverse design of polymer sequences.
Our work thus represents a step forward from predicting the
structural and functional properties of sequence-defined
polymer chains themselves to predicting their interactions
with surfaces, enabling the design of polymer sequences for
desired polymer−surface interactions.20 While our molecular
simulation model in this work is a toy coarse-grained model
that contains only two types of backbone beads, the techniques
of the data-driven machine learning workflow are readily
generalized to more complex and realistic polymer chain
models that can help mimic biological processes2−4 and
practical applications.1 Extensions of these studies to
incorporate more specificity into the models and more general
predictions of surface−polymer interactions represent targets
for future work. As highlighted by the results presented here,
there is reason to believe such refined strategies will be
extremely successful in the creation of new adhesive materials.
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■ ADDITIONAL NOTE
aTo i l l u s t r a t e , i f o n e po l yme r s e q u e n c e i s
[00110011001100110011] and the corresponding adhesive
energy is ΔFA, we can add its reversed sequence
[11001100110011001100] and ΔFA without running MD
simulations, but if one polymer sequence is a palindrome like
[00000111111111100000] with ΔFB, whose forward order and
backward order are the same, only one sequence is used so as
not to impart undue influence from that sequence to the SVR
model.
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