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ABSTRACT: Defining the similarity between chemical entities is an essential task in polymer
informatics, enabling ranking, clustering, and classification. Despite its importance, the pairwise
chemical similarity of polymers remains an open problem. Here, a similarity function for
polymers with well-defined backbones is designed based on polymers’ stochastic graph
representations generated from canonical BigSMILES, a structurally based line notation for
describing macromolecules. The stochastic graph representations are separated into three
parts: repeat units, end groups, and polymer topology. The earth mover’s distance is utilized to
calculate the similarity of the repeat units and end groups, while the graph edit distance is used
to calculate the similarity of the topology. These three values can be linearly or nonlinearly
combined to yield an overall pairwise chemical similarity score for polymers that is largely
consistent with the chemical intuition of expert users and is adjustable based on the relative
importance of different chemical features for a given similarity problem. This method gives a
reliable solution to quantitatively calculate the pairwise chemical similarity score for polymers
and represents a vital step toward building search engines and quantitative design tools for polymer data.

■ INTRODUCTION
Polymers are ubiquitous, with applications spanning clothing,1

food,2 energy,3 transportation,4 and health care.5 This breadth of
applications is achieved due to polymers’ versatility, low-cost
manufacturability, low density, and chemical resistance. The
massive design space available to polymer chemists leaves an
abundance of potentially useful polymers yet to be identified and
realized. As new polymers are discovered and current
chemistries are manipulated, polymeric data is generated,
enabling large polymer databases including PolyInfo,6 PI1M
(a polymer informatics database of about 1 million polymers),7

PolymerGenome,8 MaterialsMine,9 Open Macromolecular
Genome,10 and CRIPT (Community Resource for Innovation
in Polymer Technology).11 These databases have the potential
to facilitate polymer design.12−16 However, to accelerate
polymer design, these databases must be coupled with additional
functionalities.17,18 For example, ranked search enhances data
discoverability, and the ability to find similar polymers which
have been previously synthesized can further enable new
polymer chemistries. Additionally, classification and clustering
algorithms are needed to validate, categorize, and analyze new
input polymer data points.19 Such tasks are difficult or
impossible without a robust similarity scoring method that
calculates the magnitude of a chemical change between
polymers and quantifies pairwise chemical similarity for
polymers.20

In the field of cheminformatics, similarity scoring methods are
well-established for small molecules. Either the graph
structure21−23 is retained or it is converted into a vector,
known as a fingerprint.24 Then, either vector or graph similarity

metrics, such as Tanimoto25 and Cosine,26 may be applied to
calculate pairwise molecular similarity.25 These similarity
scoring methods have been used for a variety of tasks, such as
calculating the similarity of entries in a drug molecule library,27

designing new drug molecules,28 ranking search results,29 and
calculating the magnitude of a chemical change from one small
molecule to another.25 Specialized machine learning methods
also exist for similarity calculations of sequence-defined
biomacromolecules, such as proteins, peptides, and polysac-
charides.29,30 Both small molecules and sequence-defined
biomacromolecules have well-defined deterministic structures
that are easily represented by graphs with atoms (or molecular
fragments) as nodes and bonds as edges.29,31−38 In contrast, the
vast majority of synthetic polymers are characterized by
stochastic graphs that represent molecular ensembles or
distributions.39,40 Previous studies have used monomers and
compositions as representations and utilized methods similar to
those developed for small molecules to measure pairwise
polymer similarity, but those methods can only be applied to
polymers with simple topologies, such as homopolymers and
copolymers.41−45 These methods do not take into consideration
the variety of topologies and stochastic configurations available
to polymers; therefore, it is not possible for these methods to
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obtain an accurate and meaningful similarity score for polymers
with complex topologies and stochastic properties, such as star
polymers, graft polymers, and segmented polymers.

The first key challenge in developing a broadly applicable
polymer similarity metric is developing a representation of the
polymer stochastic graph. Aldeghi et al.40 proposed a graph
representation for polymers using stochastic edges. However,
the weight of the stochastic edges may not always be available,
and when the weight is known, it is an average value that limits
expressiveness. Guo et al.46 proposed PolyGrammar, which is
designed for polymer representation and generative modeling;
however, the current generation of PolyGrammar only imitates
chain growth polymerization.46 Recently, Lin et al.39 demon-
strated that polymers have a direct analogy to formal languages,
and using this, they were able to develop directed graphs and
automata-like deterministic graphs representing polymers.
Rather than the graph representing the chemical structure, the
graph represents a generating function that, when traversed,
produces all possible molecules in the molecular ensemble.

Here, a method for pairwise similarity scoring of polymers
based on an adaptation of Lin et al.’s graph representation39 is
proposed that is broadly applicable to stochastic ensembles
across a wide variety of polymer topologies. First, canonical
polymer graph representations are generated with repeat units
and end groups as nodes. Then, these graph representations are
separated into three parts: repeat units, end groups, and
topology. The earth mover’s distance (EMD)47−49 is utilized to
calculate the similarity of the repeat units, as well as the end
groups. Subsequently, graph edit distance (GED)30,50,51 is used
to calculate the similarity of the topology. Combining similarity

scores for repeat units, end groups, and topology yields an
overall pairwise chemical similarity for polymers that is largely
consistent with the chemical intuition of expert users and is
tunable based on the importance individual users place on
specific substructural elements.

■ METHODS
Stochastic Graph Representation. The first step in generating a

similarity score is to generate stochastic polymer graphs. The polymer
molecular structure (see Figure 1a) is converted to a canonical
BigSMILES52,53 representation, a structurally based line notation for
describing macromolecules (see Figure 1b), following the priority rules
of canonicalization procedures from Lin et al.39 This canonicalization
step is essential as it ensures that every polymer has exactly one
representation. Without this step, it is possible to generate a similarity
score smaller than one for the same polymer, as multiple noncanonical
BigSMILES can map to the same polymer. Next, the algorithm from Lin
et al.39 parses the canonical BigSMILES and uses connectivity
information to build directed graphs, as shown in Figure 1c. Each
node is labeled with either “start,” “end,” a bonding descriptor, a repeat
unit simplified molecular-input line-entry system (SMILES), or an end
group SMILES. For the repeat units SMILES and end group SMILES,
the symbol, *, is used as a connection point to clearly illustrate which
atoms are connected in the polymers and which parts of the repeat units
belong to pendant groups. For example, one of polymer A’s stochastic
objects from its canonical BigSMILES, CC(C[>])O[<1], is first
transferred to CC(C*)O*. Next, CC(C*)O* is transferred to
*CC(C)O*, which is more intuitive. The transfer process to a more
intuitive SMILES string does not affect the similarity calculation.

For polymer A, a random copolymer, the directed graph39 reads from
the left end group OCCO* to the stochastic bonding descriptor, which
can connect either to poly(propylene glycol) (PPO) with repeat unit
*CC(C)O* or poly(ethylene glycol) (PEG) with repeat unit *CCO*.

Figure 1. Converting polymer molecular structures into the corresponding stochastic polymer graph representations. (a) Random copolymer
(polymer A), diblock copolymer (polymer B), and alternating copolymer (polymer C). (b) Canonical BigSMILES representations produced using the
canonicalization procedures from Lin et al.39 (c) Algorithm from Lin et al.39 parses the canonical BigSMILES and uses the connectivity information to
build directed graphs. Each node is labeled with either “Start”, “End”, a stochastic bonding descriptor, repeat unit SMILES, or end group SMILES. The
directed graphs are converted into stochastic graphs in panel (d), where the nodes of “Start” and “End” are removed, stochastic bonding descriptor
nodes are represented by circles with indexes (D1, D2, ···), repeat unit SMILES nodes are represented by squares with indexes (R1, R2, ···), and end
group SMILES nodes are represented by hexagons with indexes (E1, E2, ···). The colors of repeat unit SMILES nodes and end group SMILES nodes
match the corresponding repeat units and end groups in the canonical BigSMILES representations and directed graph representations.
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Since H* as an end group is implicit in the canonical BigSMILES, the
directed graph does not have a separate node for the right end group,
H*.39 As for polymer B, a diblock copolymer, the directed graph reads
from the left stochastic bonding descriptor, which can connect the
repeat unit *C(CC)C* or its mirror *CC(CC)*, and then the graph
reads the right stochastic bonding descriptor, which can connect the
repeat unit *C(C)C* or its mirror *CC(C)*. If the repeat units are
symmetric, such as *CC*, two connection paths still exist, even though
these two connection paths are identical. Therefore, to preserve the
topological feature and ensure the robustness of the similarity function,
two possible connection paths are retained for symmetric repeat units.
For polymer C, an alternating copolymer, the directed graph reads from
the left stochastic bonding descriptor, which connects the repeat unit
*C(�O)C(C)CCCC(�O)* or its mirror *C(�O)CCCC(C)C(�
O)*; then, the graph reads the right stochastic bonding descriptor,
which connects the second repeat unit *OC(C)CO or its mirror
*OCC(C)O*, and finally the graph returns to the left stochastic
bonding descriptor. Again, both paths are kept for symmetric repeat
units.

Finally, the directed graphs in Figure 1c are converted into polymer
stochastic graphs in Figure 1d, where the nodes of “Start” and “End” are
removed, stochastic bonding descriptor nodes are represented by

circles, repeat unit SMILES nodes are represented by squares, and end
group SMILES nodes are represented by hexagons. The colors of repeat
unit SMILES nodes and end group SMILES nodes match the
corresponding repeat units and end groups in the canonical BigSMILES
representations.
Overview of the Similarity Method. Based on this stochastic

polymer graph representation, a method to calculate the pairwise
overall chemical similarity between two polymers is proposed, as
illustrated in Figure 2. The polymer graph is decomposed into three
components: repeat units, end groups, and topology. Linkers between
stochastic objects are also included in this category of end groups. The
topology here represents both the local connectivity (the way the
monomer units themselves are connected) and the global topology of
the graph. Individual similarity metrics are calculated for each
component, which are then combined to yield an overall similarity
score. The EMD is used to calculate the similarity scores of repeat units
SRU and end groups SEG. The topological similarity STOP is then
calculated from the stochastic graph representations with all chemical
details removed using GED. Finally, the overall similarity score SOA
between two polymers is generated by combining these three scores via
either a geometric or arithmetic mean. The details of calculating EMD,

Figure 2. Schematic of the method for calculating the pairwise chemical similarity between the two polymers. Using the stochastic graph
representation, the polymers are separated into three key features: repeat units, end groups, and topology. Linkers between stochastic objects are also
included with end groups, and the topology here represents both the local connectivity (the way the monomer units themselves are connected) and the
global topology of the graph. The similarity scores for the repeat units SRU and the end groups SEG are calculated via earth mover's distance (EMD),
whereas the similarity score for the topology STOP is calculated via graph edit distance (GED). The overall pairwise similarity score SOA between two
polymers is generated by combining these three scores via either a geometric or arithmetic mean.

Figure 3.Workflow of earth mover’s distance (EMD) calculation for ensemble similarity using the repeat unit sets of polymers A and B as an example.
The first step is to get the repeat units. Polymer A has two repeats (R1A and R2A), and polymer B has two repeat units (R1B and R2B), where the
subscripts are used for distinction. The second step is to obtain the corresponding weight for each repeat unit. The third step is to obtain the
corresponding fingerprints (FPs). The fourth step is to calculate the set of pairwise distances D = [di,j] based on the similarity metric. Once the weights
and the set of pairwise distancesD = [di,j] are obtained, the fifth step is to optimize the transport flows F = [f i,j] to calculate the distance EMDRU and the
similarity score SRU. The procedure for the end groups is identical.
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GED, and overall similarity scores are illustrated in detail in the
following sections.
Earth Mover’s Distance for SRU and SEG. The workflow of the

repeat unit similarity SRU is shown in Figure 3 using polymers A and B as
examples. The procedure for the end groups is identical to the
procedure for repeat units. The first step is to identify the repeat units.
Polymer A has two repeat units (R1A and R2A), and polymer B has two
repeat units (R1B and R2B). Since the frequencies of the repeat units can
vary, the repeat units of each polymer can be conceptualized as a
ensemble of molecular fragments. Therefore, the problem of calculating
SRU is fundamentally a problem of calculating the similarity S between
different ensembles or distributions of small molecules, each of which
may be computed using existing methods for calculating the pairwise
similarity of small molecules.25 Specifically, molecular fragment
ensemble P = {(p1,wp1), (p2,wp2), ···, (pi,wp di

), ···, (pm,wp dm
)} has m

molecular fragments, where pi is a molecular fragment such as a repeat
unit or end group and wp di

> 0 is the weight, related to the average
probability (or frequency, z) of the molecular fragment being present in
the polymer. Similarly, the second ensemble Q = {(q1,wqd1

), (q2,wq d2
), ···,

(qj,wqdj
), ···, (qn,wqdn

)} has n molecular fragments. The sums of the
weights for P and Q are both normalized and equal to one ∑i=1

m wp di
=

∑j=1
n wqdj

= 1.
The second step is to obtain the weight of each molecular fragment.

Unlike small molecules, whose chemical structure uniquely determines
the molar mass, polymers may have varying degrees of polymerization
or monomer composition for a given chemical structure. When the
composition or degree of polymerization is known, this may be used to
determine the weights. For repeat units within the stochastic objects

inside the first level of curly brackets, or equivalently at the same level as
the backbone when the backbone is present, based on the canonical
BigSMILES, the weight w of a repeat unit is directly proportional to the
average number of repeat units per polymer, z

(1)

If zi is not specified, then the sum of molecular fragments connected
to each stochastic bonding descriptor shares the same relative weight,
and each molecular fragment connected to the same stochastic bonding
descriptor shares the same relative weight. For example, as shown in
Figure 4a, in a random copolymer, R1-r-R2, wR1 = wR2. In Figure 4b, a
diblock copolymer, R1-b-R2, has wR1 = wR2. Figure 4c illustrates a
diblock with one block being a random copolymer (R1-r-R2)-b-R3
such that wR1 = wR2 = 0.5wR3. An alternating copolymer, R1-alt-R2, with
wR1 = wR2, is shown in Figure 4d.

For repeat units that are the nested stochastic objects based on the
canonical BigSMILES, such as the repeat units in the side chain of graft
polymers or the repeat units in the macromonomer of segmented
polymers (see Figure 4e,f), the lengths, or equivalently the degrees of
polymerization, of the nested stochastic objects affect the polymer
properties.54,55 Thus, the length of nested stochastic objects should be
included in the weights. However, if the relative weights are
proportional to the frequencies, then the influence of the backbone
repeat unit may be nearly zero when the nested stochastic objects are
long. Therefore, for nested stochastic objects, the relative weights
between one repeat unit in the backbone and one repeat unit in the
nested stochastic object are given by a logarithmic equation.

Figure 4. Weight assignment policy for polymers as a function of polymer topology when degrees of polymerization are not specified. Six types of
polymer molecular structures and the corresponding canonical BigSMILES and stochastic polymer graph representations are displayed. (a) Random
copolymer. (b) Diblock copolymer. (c) Diblock copolymer with one block being a random copolymer (R1-r-R2)-b-R3. (d) Alternating copolymer. (e)
Graft polymer where the monomer on the backbone has a side chain. (f) Segmented polymer, where a polymer is nested along the backbone.
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(2)

where z1 and w1 are the frequency and weight of the backbone repeat
unit connected to a nesting stochastic object; z2, and w2 are the
frequency and weight of the repeat unit in the nesting stochastic object.
This modification ensures that the weight monotonically increases with
the monomer frequency while reducing the weight of the grafts and
segments at high degrees of polymerization. For example, if z2:z1 =
200:1, then w2:w1 = 6.3:1. The range of the length of the graft chain or
segment part is typically one to hundreds, yielding a range of of
about 1 to 8. If the lengths of grafts or macromonomers are not
specified, is a reasonable choice for a default value.

The weight assignment for the end groups follows the same
principles. For example, the same weight is used for both end groups in
linear polymers (Figure 4c). For graft polymers, the weight assignment
between the end groups at the ends of the side chains and the end
groups on the backbone also follows eq 2 because there is one end
group per graft side chain. If the degrees of polymerization are not
specified, then the weight of the end groups at the end of the side chains
is four times the weight of the end groups at the end of the backbone
chain, as shown in Figure 4e. With these rules, the similarity algorithm
can compare polymers based on chemical structure alone without any
degree of polymerization or composition information. However, if it is
known, this information can be used to improve similarity scoring.

Returning to the example in Figure 3 and following the above rules,
the two repeat unit ensembles are P = {(R1A,0.5), (R2A,0.5)} for
polymer A and Q = {(R1B,0.5), (R2B,0.5)} for polymer B. For polymer
B, R1B and R1B′ are the different configurations in the polymer chain,
but R1B and R1B′ are identical when separated from the polymer chain;
therefore, the weight of R1B′ is merged with R1B and the same for R2B′.

With the ensembles defined, the EMD is a metric that is well-
constructed to calculate the similarity of ensembles or distributions
such as these; it has been successfully applied in multiple fields for
ensemble similarity calculation, such as the similarity of inorganic
solids,47 the similarity of biomarker expression levels,48 and geometric
data set distances.49 EMD may be conceptualized as the minimal
amount of work needed to transform one distribution into another, and
it can be formulated and solved as a transportation problem. Here, the
problem is transforming one discrete molecular fragment distribution P
to another Q with the minimum amount of work done, which can be
interpreted as a measure of dissimilarity. Therefore, the problem of
calculating SRU and SEG is equivalent to calculating the similarity S
between different ensembles of molecular fragments, each of which may
have a pairwise similarity sij computed using existing methods for
calculating the pairwise similarity of small molecules.25

Thus, the next step is to determine the pairwise similarity of the
individual molecular fragments. First, each molecular fragment is
represented by a SMILES string56,57 containing “*” symbols to indicate
the interconnections between monomers.7,44 These SMILES strings are
then transformed into fingerprints using Morgan fingerprints (radius =
2, nBits = 2048),40 as implemented in RDKit58 (step 3 in Figure 2).
Then, the pairwise similarity score between the molecular fragments pi
and qj, si,j, is calculated using the Tanimoto similarity metric.25,30 The
similarity score si,j ranges from 0 to 1, where self-similarity is 1. The
more similar the two molecular fragments pi and qj, the larger si,j. Apart
from the Morgan fingerprints and Tanimoto similarity metric, different
settings for radius, nBits, and useChirality of Morgan fingerprints,30

many other fingerprint embedding functions,24 molecular graph
embedding methods,21−23 and different similarity metrics25 can be
utilized to obtain si,j without modifying the overarching algorithm for
polymer similarity described here.

EMD is inherently a measure of dissimilarity instead of similarity, so
first, the similarity score si,j must be converted to a dissimilarity score
using25,30

(3)

as shown in step 4 of Figure 3. After all necessary information is
obtained on the wp di

, wqdj
, and di,j and for all the entities in the ensembles,

the optimized transport flows F = [f i,j] and the EMD are determined
using eq 4a along with the constraints, as specified in eq 4b−4e.

(4a)

(4b)

(4c)

(4d)

(4e)

f i,j represents the amount of weight at pi that is transported to qj. The
sum of all the individual flows originating from pi is equal to the weight
wp di

, and equivalently, the sum of all the individual flows transported to qj

is equal to the weightwqdj
, as shown in eq 4c,4d. Here, f i,j·di,j is the cost for

each individual flow. Thus, EMD represents the minimum overall cost
to convert one ensemble P to another ensemble Q.

These equations are coded into Pyomo,59−61 a python-based, open-
source optimization modeling language with a diverse set of
optimization capabilities, and solved with a Computational Infra-
structure for Operations Research (COIN-OR) branch-and-cut (cbc)
solver,62,63 an open-source mixed integer linear programming solver
written in C++. EMD(P,Q) is bound between 0 and 1, representing the
dissimilarity score between P and Q.

Finally, the similarity score S(P,Q), for the ensemble pair P and Q
may then be defined as

(5)

Equation 5 is consistent with eq 3 relating similarity and dissimilarity
for small molecules. The value of S(P,Q) is also between 0 and 1. The
smaller the EMD(P,Q), the larger S(P,Q), and the higher the similarity
between P and Q. Both the similarity between two repeat unit
ensembles, SRU (P,Q), and the similarity between two end group
ensembles, SEG (P,Q) are calculated through the above EMD method.
For the pair polymer A and polymer B, SRU = 0.28 and SEG = 0.10 (step 5
in Figure 2). Since not all polymers’ molecular representations include
explicit end groups (e.g., rings and implicit end groups), some
complementary rules for the end group similarity scores are set for those
situations: (1) if two polymers both do not have end groups, SEG = 1;
(2) if one polymer has end groups and the other polymer does not have
end groups, then SEG = 1.

EMD provides greater resolution of chemical differences between
polymers than simple sums or averages of the Morgan fingerprints or
other fingerprints for each repeat unit. The reason is that simply
averaging or summing44 prematurely reduces the dimensionality of the
system, eliminating differences among ensembles. Examples are
included in the Supporting Information.
Graph Edit Distance for STOP. The next step is to compute the

similarity score for topology STOP. Since the chemical details have
already been accounted for, the topology can be treated as a
homogeneous version of the stochastic graph representation where
all edges and nodes are treated identically (see gray topology graphs gA
and gB in Figure 2). To calculate the similarity between two different
polymer topologies, GED30,50,64 is utilized. GED, first reported by
Sanfeliu and Fu in 1983,65 is a measure of similarity between two
graphs, g1 and g2. The idea behind GED is to find the minimal set of
transformations that can transform graph g1 into graph g2 by means of
edit operations on graph g1. The set of elementary graph edit
operators64 typically includes node and edge insertion, deletion, and
substitution, although substitution is not considered here since the
topology graphs are homogeneous.
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(6)

where denotes the set of edit paths transforming g1 into graph
g2, and c(ei) is the cost of each graph edit operation ei. For simplicity,
c(ei) = 1, the cost of each graph editing step is set to be one. GED (g1,g2)
is zero when g1 and g2 are identical. GED is symmetric; the cost of
transforming graph g1 into graph g2 is the same as the cost of
transforming graph g2 to graph g1. GED is widely used for similarity
measurements in small molecules66−68 and sequence-defined bio-
macromolecules.30,69,70 Using Figure 2 as an example, to transform gA
into gB, gA adds three nodes and five edges; therefore, the GED (gA,gB) =
8.

To map GED onto a topological similarity score STOP with a range
between 0 and 1, an exponential decay function on the normalized

GED, is used51

(7)

where Ni denotes the number of nodes of gi; and α is a tunable
parameter with the default value of 1. STOP (g1,g2) is 1 when g1 and g2 are
identical. STOP (g1,g2) is also symmetric, so STOP (g1,g2) = STOP (g2,g1).
As shown in Figure 2, for polymers A and B, NA =4 and NB = 7;
therefore, STOP (gA,gB) = 0.23.

Although the calculation of an exact GED is nondeterministic
polynomial-time hard (NP-hard), the size of the topological graph is
relatively compact, unlike the graph representations used for sequence-
defined biomacromolecules, which can be very complex30 for large
molar masses. Additionally, the chemical details are dropped from the
stochastic topological graph, and the exact GED is calculated on a
homogeneous version of the stochastic graph representation where all
edges and nodes are treated identically, which dramatically reduces
computational complexity and cost. Therefore, computing the exact
GED for the stochastic topological graph for polymers represented in
this compact fashion is computationally tractable.
Overall Pairwise Chemical Similarity Score. From the above

EMD and GED calculations, three similarity scores are obtained: SRU
for repeat units, SEG for end groups, and STOP for topology. To calculate

the overall similarity score SOA, a weighted geometric average is
proposed

(8)

where WRU + WTOP + WEG = 1 are the weights for the repeat units,
topology, and end groups, respectively. These weights can be tuned to
suit the user’s target application. For simplicity, reasonable defaults of
WRU = 0.475, WTOP = 0.475, and WEG = 0.05 are chosen. The choice of
WEG = 0.05 was motivated by the low frequency of the end group
relative to the repeat unit. This choice results in , about 1

order of magnitude. The choice of an equal setting for WRU and WTOP is
grounded in the idea that both repeat units and topology are essential
for capturing polymer similarity based on chemical intuition. The
repeat units reflect the types of monomers that comprise the polymers,
and the repeat units can influence physical properties such as glass
transition temperature and density. The topology reflects how the
monomers are connected in the polymer chains and what synthesis
routines are used for polymerization. The topology also significantly
impacts the physical properties, such as viscosity and phase behavior.
For additional freedom in user-specific cases, a weighted arithmetic
mean can also be used to calculate the overall similarity score

(9)

where WRU + WTOP + WEG = 1 are the weights in the arithmetic
function.

Applying these equations along with different weight choices for
polymers A and B from Figure 2 yields SOA (polymer A, polymer B) =
0.243 with the weighted geometric mean and SOA (polymer A, polymer
B) = 0.248 with the weighted arithmetic mean. In this case, the results
are similar for different mean functions because SRU and STOP, which
occupy the major weights, are similar. If SRU and STOP are more distinct,
then the choice of mean function evidently affects the SOA. In the
Results and Discussion section, the geometric mean is used as the
default, as it weighs very small similarities more heavily. Weighted
arithmetic mean values are provided in the Supporting Information for
completeness. In all the following cases, the weight settings WRU =
0.475, WTOP = 0.475, and WEG = 0.05 are used.

Figure 5. Four diblock polymers and the corresponding canonical BigSMILES, C1-1 (a), C1-2 (b), C1-3 (c), and C1-4 (d), which have the same
topological graph representation [as shown in (e)] and end groups but different repeat units. The polymerization degrees m and n are not specified so
that all the repeat units share equal weight. (f) Pairwise repeat unit ensemble SRU and (g) overall similarity SOA for four diblock polymers in Case 1.
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■ RESULTS AND DISCUSSION
Case 1: Varying Repeat Units. Case 1 illustrates the

computation of the pairwise similarity score of polymers with
the same topological graph representation and end groups but
different repeat units, as shown in Figure 5a−d. These polymer
examples are collected and modified from Shim et al.71 All four
polymers are diblock copolymers, and they have an identical
stochastic topological graph representation with nodes’ and
edges’ details shown in Figure 5e, where the colors of nodes
match with the repeat units and end groups and the directions of
the edges match with the connection paths. Therefore, all the
pairwise STOP = 1.0 and SEG = 1.0 and SRU determines the overall
pairwise similarity SOA. The results are shown in Figure 5f,g.
Taking C1-1 as a reference, the similarity order is C1-3 > C1-2 >
C1-4; this is consistent with chemical intuition since adding
more functional groups increases the dissimilarity between
monomers, and adding functional groups to the simpler
monomers results in a larger dissimilarity.
Case 2: Varying Topologies. Apart from the repeat units,

polymers’ topology can also largely affect the polymer’s
properties in many aspects. Case 2 compares the pairwise
similarity score of polymers that have the same repeat units but
different topological graph representations, as shown in Figure
6a−d. These examples of reversible addition-fragmentation
chain transfer (RAFT)72,73 polystyrenes (C2-1: one-arm, C2-2:

two-arm, C2-3: three-arm, C2-4: four-arm) are collected and
modified from Altintas et al.72 and Zayas et al.73

All four RAFT polymers have the same styrene repeat unit.
Therefore, the pairwise SRU = 1 for repeat unit ensembles is used
for all polymer pairs. However, as shown in Figure 6a−d, these
four polymers have different stochastic graph representations.
The results of the pairwise STOP (Figure 6e) reflect these
topological differences. Taking the one-arm polymer C2-1 as a
reference, STOP decreases from C2-2 to C2-4, showing that the
GED intuitively increases as the difference in the number of
arms increases. The absolute GED, GED (C2-1, C2-2) = GED
(C2-2, C2-3) = GED (C2-3, C2-4), but STOP is determined by
the normalized GED. Therefore, the neighbor pairwise similarity
score increases with the increasing number of arms: STOP (C2-3,
C2-4) > STOP (C2-2, C2-3) > STOP (C2-1, C2-2). This feature is
also chemically intuitive; when the number of arms is low,
adding an arm leads to a large change in topology, but when the
number of arms is high, adding an arm leads to a smaller change
in the topology. The end group ensembles are also slightly
different because of the chemical structure changes in the core of
the star (Figure 6f). The ranking of the overall similarity score
SOA (see Figure 6g), which is mainly determined by STOP, follows
the same trends as STOP.
Case 3: Varying Both Repeat Units and Topologies. In

many real-world applications, one is interested in the similarity

Figure 6. Four RAFT polystyrenes, the corresponding canonical BigSMILES, and stochastic graph representations. (a) One-arm polymer C2-1, (b)
two-arm polymer C2-2, (c) three-arm star polymer C2-3, and (d) four-arm star polymer C2-4. (e) Pairwise topological similarity STOP, (f) end group
ensemble similarity SEG, and (g) overall similarity SOA for four RAFT polymers in Case 2.
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between polymers that have both different chemistries and
different topologies. Three block copolymers that have both
different repeat units and different topological graph represen-
tations are shown in Figure 7a−c: C3-1, a diblock polymer; C3-
2, a triblock polymer; and C3-3, a tetrablock polymer. The
default weight assignment,WRU = 0.475,WTOP = 0.475, andWEG
= 0.05, is one suitable option, but this case also illustrates how
modifying the values of WRU and WTOP can change the overall
pairwise similarity scores SOA and affect the final ranking. For
simplification, all three block polymers have the same end
groups, and WEG = 0.05 is held constant.

The results of pairwise repeat unit similarity scores SRU are
shown in Figure 7d, and the results of the pairwise topological
similarity score STOP are shown in Figure 7e. C3-1, C3-2, and
C3-3 have the same end groups; therefore, the pairwise SEG = 1
for all pairs. If C3-1 is taken as the reference, the repeat units of
C3-3 are closer to C3-1’s than C3-2’s based on their chemical
structures in Figure 7a−c. Therefore, the C3-3 tetrablock
polymer has a higher SRU than the C3-2 triblock polymer. With
respect to topology, GED increases with increasing difference in
block number. Therefore, C3-3 tetrablock polymer has a lower

STOP than C3-2 triblock polymer. Therefore, the similarity
ranking of SRU is opposite to the similarity ranking of STOP in this
case. In this situation, modifying the values of WRU and WTOP
can change the final ranking order of SOA (see the Supporting
Information), thus demonstrating the flexibility of the polymer
similarity method proposed.
Case 4: Graft Copolymers. The polymer similarity method

can be applied to complex polymer architectures. Case 4
demonstrates similarity scoring for graft polymers (see Figure
8a−d) collected from Walsh et al.55 and Su et al.74 Here, degrees
of polymerization are unspecified; therefore, the molecular
fragment weights are the default values (Figure 4f). Similarity
calculations for graft polymers with specified degrees of
polymerization are included in the Supporting Information.

Pairwise similarity scores are listed in Figure 8e−g. C4-1 and
C4-2 have different repeat units on both backbones and side
chains but have similar topology graphs. C4-1 and C4-3 have
significant overlapping on the repeat units but have more
different topologies. Therefore, from chemical intuition, SRU
(C4-1, C4-2) < SRU (C4-1, C4-3) and STOP (C4-1, C4-2) > STOP
(C4-1, C4-3). The quantitative scores in Figure 8e,f are

Figure 7. Three block polymers, the corresponding canonical BigSMILES, and stochastic graph representations. (a) Diblock polymer C3-1, (b)
triblock polymer C3-2, and (c) tetrablock polymer C3-3. (d) Pairwise repeat unit ensemble similarity SRU, (e) topological similarity STOP, and (f)
overall similarity SOA for the three block polymers in Case 3.
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consistent with this chemical intuition. Using the default
weights, the overall similarity score SOA (C4-1, C4-2) < SOA
(C4-1, C4-3) due to the larger difference in SRU for the pair C4-1
and C4-2. C4-3 and C4-4 have the same repeat units and end
groups; only C4-3 is a random copolymer, whereas C4-4 is a
block copolymer. Taking C4-1 as a reference, SRU (C4-1, C4-3)
= SRU (C4-1, C4-4), but STOP (C4-1, C4-3) > STOP (C4-1, C4-
4). Thus, the order of the overall similarity score is SOA (C4-1,
C4-3) > SOA (C4-1, C4-4). This is equivalent to the statement
that a homopolymer is closer to a random copolymer than a
diblock polymer, assuming the same repeat units. While the
above examples follow intuition, there are many other examples

for which a clear intuitive answer does not exist. The method
presented here provides a quantitative similarity score for all
cases and, when available, is consistent with intuition.
Case 5: Segmented Polymers. Examples of segmented

polyurethanes (see Figure 9a−d) are collected from Szcze-
panćzyk et al.75 with the symmetric isocyanates and chain
extenders modified to be asymmetric to clarify the topological
graphs shown in Figure 9e, specifically that R1 and its mirror R1′
are chemically distinct. For simplicity, it is assumed that the
degrees of polymerization (x,y,z,n) are not specified, but
calculations including degrees of polymerization are included
in the Supporting Information. The comparison between C5-1

Figure 8. Four graft polymers, the corresponding canonical BigSMILES, and stochastic graph representations. (a) C4-1 and (b) C4-2 are homo graft
polymers but have different main chain repeat units and side chain repeat units. (c) C4-3 is a random graft copolymer, where one monomer on the main
chain has a side chain and the other monomer on the backbone does not have a side chain. (d) C4-4 is a diblock graft copolymer, where one monomer
on the main chain has a side chain but the other monomer does not. The polymerization degrees are not specified for all five graft polymers, so the
molecular fragment weights are the defaults in Figure 4f. (e) Pairwise repeat unit ensemble similarity SRU, (f) topological similarity STOP, (g) end group
ensemble similarity SEG, and (h) overall similarity SOA for four graft polymers in Case 4.
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and C5-2 quantifies the impact of changing isocyanate; the
comparison between C5-1 and C5-3 quantifies the impact of
changing polyol, and the comparison between C5-1 and C5-4
quantifies the impact of changing the chain extenders (Figure
9a−d). Since the weight of the repeat unit in the macro-
monomer is larger than the weights of the backbone repeat units,
changing the repeat units in the macromonomer leads to a larger
effect on similarity. Thus, taking C5-1 as a reference, C5-3 is the
least similar (see Figure 9f,g). Additionally, for C5-2, C5-3, and
C5-4, each of them only has one different component compared
to C5-1, while each of them has two different components from
the other two. For example, C5-2 has different R1 from C5-1,
C5-2 has different R1 and R3 from C5-3, and C5-2 has different
R1 and R2 from C5-4. Therefore, for each of C5-2, C5-3, and
C5-4, the similarity score with C5-1 is always larger than the
pairwise similarity score with the other two. For instance, the
overall similarity is SOA (C5-2, C5-1) > SOA (C5-2, C5-3) and
SOA (C5-2, C5-1) > SOA (C5-2, C5-4) (see Figure 9g). These
results are consistent with the chemical intuition.
Case 6: Unspecified Chemical Groups. In some cases,

molecular fragments have variable groups, commonly called “R-
groups”, as shown in Figure 10. The similarity calculation first
identifies the functional groups or chains that R-groups
represent and then takes only the other remaining molecular
fragment structures into consideration; therefore, polymer C6-1
has a similarity of 1 with all other polymers illustrated in Figure
10.
Fine-Ranking Targets When the Same Overall Sim-

ilarity Score Occurs. One widespread use for similarity scores
is to rank target molecules with respect to their similarity to a
query molecule. The similarity methods developed herein are
suitable for this purpose, but in many cases, such as the prior

examples in Figures 10 and S2b, ties are possible. If the two
targets’ similarity scores in SOA are the same, tiebreaking rules,
such as those listed below, may be implemented in order to
produce a single preferred ordinal list of similarities.

1. For polymers with the same overall similarity score SOA,
component similarity scores SRU, STOP, and SEG were
prioritized in the order of their weights. For instance, in
Figure S2b, where SOA (C3-1, C3-2) = SOA (C3-1, C3-3)
at the weight setting WRU = 0.53, WTOP = 0.42, and WEG =
0.05, fine-ranking is carried out by prioritizing SRU
yielding C3-3 before C3-2 when taking C3-1 as reference.

2. For pairs that are still tied, rank according to the total
number of heavy atoms in the canonicalized BigSMILES
strings. Targets with a larger number of heavy atoms
occupy a higher priority order. Figure 10, for example, the

Figure 9. Four segmented polymers and the corresponding canonical BigSMILES. (a) C5-1 and C5-2 have different isocyanates. C5-1 and (c) C5-3
have different polyols. C5-1 and (d) C5-4 have different chain extenders. (e) is the stochastic graph representation of all four segmented polyurethanes.
(f) Pairwise repeat unit ensemble similarity SRU, (g) overall similarity SOA for four segmented polymers in Case 5.

Figure 10. (a) Polymer C6-1, a polymer with an unspecified “R-group”.
(b) Polymer C6-2, (c) polymer C6-3, and (d) polymer C6-4 are all
possible polymer candidates that polymer C6-1 represents.
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results of similarity order are C6-3 > C6-4 > C6-2 when
taking C6-1 as the reference.

3. If the total number of heavy atoms is tied, rankings may be
performed by individual atom types in the order of atoms
with larger atomic numbers.

4. Finally, alphabetized canonicalized BigSMILES39 can
break any remaining ties.

Areas for Future Development. One key application of
our work is ranking; for this application, a computationally
efficient algorithm is essential. Thus, several compromises were
made to ensure that the methods developed here could be
immediately used. Specifically, repeat units, end groups, and
topology are separated, and the nodes’ chemical details in
topology are ignored in the GED calculation, resulting in a loss
of chemical connectivity between nodes. For example, this
method gives a similarity score of 1 for ABC and ACB triblock
copolymers. In cases where these fine-grained distinctions
matter and computational speed can be compromised, this
limitation can be solved by including the nodes’ chemical details
in the GED calculation.30 Another simplification is that only the
average frequencies of the repeat units based on their average
polymerization degrees are used in the EMD calculation; thus,
the dispersity is ignored. For instance, EMD cannot distinguish a
RAFT four-arm star polystyrene with equal arm length from a
RAFT four-arm star polystyrene with various arm lengths for
each arm,76,77 where the sums of the four arm-length of these
two polymers are equal. EMD cannot distinguish a random
copolymer and a gradient polymer, which have the same repeat
units and compositions, since the BigSMILES representations
which are used to generate the stochastic graph representations
cannot distinguish them. Additionally, EMD cannot distinguish
bottlebrush polymers with hourglass, football, bowtie, and
sphere architecture profiles for the graft side chains55 where the
sums of their whole graft side chain length are the same. Again,
this simplification ensures that the method is computationally
efficient.

Another limitation of this work is that it requires a canonical
BigSMILES to generate a deterministic stochastic graph. Since
the current BigSMILES canonicalization from Lin et al.39 is
limited to linear polymers and thus cannot handle network
polymers and branched polymers, the method only applies to
polymers with a well-defined backbone. Without canonicaliza-
tion, multiple graph representations and monomer sets are
possible for a single polymer, which could lead to a similarity
score smaller than one even when two polymers are identical.
Once a canonicalization method for branched and network cases
is available, they can be implemented by using the same methods
described herein.

Finally, tacticity has significant effects on the physical
properties of polymers, such as crystallization, melting temper-
ature, solubility, and mechanical properties; however, the
treatment of tacticity by fingerprinting algorithms can pose
challenges for similarity scoring. The influence of tacticity on
pairwise similarity calculation is studied in the Supporting
Information using an example of four polypropylenes with a
pure head-to-tail configuration and different tacticities (two
stereoisomers of isotactic polypropylene, syndiotactic poly-
propylene, and atactic polypropylene). The results show that the
two stereoisomers of isotactic polypropylene have the highest
similarity, and isotactic polypropylene and syndiotactic
polypropylene are closer to each other compared to atactic
polypropylene, which is chemically intuitive and constant with

the crystallinity and melting temperature. However, the Morgan
fingerprint treats the two stereoisomers of isotactic polypropy-
lene asymmetrically and overly differently, which results in two
areas for further improvement. First, the similarity scores
between the two stereoisomers of isotactic polypropylene and
syndiotactic polypropylene are found to be similar but not
identical, contrary to the expected chemical intuition. Second,
the similarity between the two stereoisomers of isotactic
polypropylene is expected to be closer to one. One potential
solution is to develop a different embedding method for
molecular fragments that can treat stereoisomers symmetrically
and with less differentiation, but that is beyond the scope of this
work.

■ CONCLUSIONS
This work quantitatively calculates pairwise chemical similarity
by first developing the polymers’ stochastic graph representation
and then utilizing two similarity measurements, EMD and GED.
The EMD metric captures the similarity of repeat units and end
groups by computing the similarity score between individual
molecular fragments according to their chemical structures,
building on current methods for small molecular similarity
calculations. EMD preserves the molecular fragments’ chemical
characteristics better than simply averaging or summing the
fingerprints. The GED metric captures the topological similarity
to illustrate how the two polymers are similar in their topological
connections. A series of cases illustrates the flexibility and utility
of this method across a wide range of polymer chemistries. While
there is no ground truth for polymer similarity, the method
produces results that are consistent with chemical intuition
across all explored cases.

The similarity metric proposed herein gives a solution to
calculate the chemical pairwise similarity score, which enables
the sorting of retrieved database entries based on a query
polymer as well as the detection of abnormal data for polymer
data validation. Additionally, the quantitative similarity scores
can be used to cluster or catalog polymer data and improve
polymer discovery. Therefore, this method is an essential
contribution to the field of polymer informatics.
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